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INFRARED SPECTRAL EMITTANCE OF ROCKS FROM THE PISGAH CRATER
AND MONO CRATERS AREAS, CALIFORNIA

by

David L. Daniels

ABSTRACT / 7/ 7

A Block Engineering Inc. Model I-4T interferometer-type
spectrometer was used to mcasure the spectral emittance, in the
8 to 14 micron wavelength band, of various rock types from the
Pisgah Crater and Mono Craters areas in California. The emit-
tance spectra of acidic igneous rocks (rhyolite obsidian and
punice, Bishop Tuff, quartz monzonite) are very similar and are
spectrometrically difficult to distinguish one from the other.

Their spectra, however, do differ from the spectra of basalt from

both localities. . 2
W/ﬂ



INTRODUCTION

The principal objective of this investigation is to measure the
infrared spectral emittance of natural rock surfaces from two NASA
test sites. Samples examined came from the Mono Craters area near
Lee Vining, California and from Pisgah Crater, 40 miles east of
Barstow, California. Spectral emittance data is needed before remote
sensing identification schemes based upon spectral emission differences
can be formulated. The spectral region concerned is the 8-14 micron
atmospheric window. .

Weathering, like surface roughness and granulation, alters the
emittance spectra of rocks, effectively reducing the differences in
spectra among different rocks. The aim of this work was to determine
if enough of the spectral signature is retained to be recognizable
for typical samples of weathered rocks.

The infrared spectral emittance of a wide variety of rocks is
well known largely due to the work of Lyon (7,8,9,10). Considerable
gpectral emittance data for rough-surfaced rocks is available (7, 8, 9);
the effect of granulation on the spectra of rocks has also been inves-
tigated (7, 8, 11). Lyon and Patterson have measured the spectral
emittance of natural rock surfaces in place using a mobile spectro-

photometer (10).



EXPERIMENTAL TECHNIQUES

‘Samples

The location of the samples from the Mono Craters area is
shown in figure 5. The geology of the same region may be seen in
previous reports; Technical Letters 9 (ref. 5) and 12 (ref. 4).
Figure 6 shows the geology and sample locations of the Pisgah
Crater area. Sample descriptions are listed in tables 1, 2 and 3.
At the sampling localities a wide variation in weathering and sur-
face roughness was observed. Samples collected, however, were
estimated to be average in these variations. Slabs about 3 x 3 x 1/2

inches were cut from the samples, retaining one large natural surface,
Instrumentation

The flat, reverse side of the cut sample is placed on a tem-
perature-regulated hot plate and heated to 345°K (72°C) by conduction.
The hot plate and sample are enclosed'in an aluminium box measuring
7 x 7 x 7 inches with 1/2 inch walls blackened on the inner surface
(3M Velvet Black Enamel) (fig. 1). The upper surface of the sample
rédiates into the spectrometer optics which receives the radiation
through a hole in the top of the box.

The purpose of enclosing the sample in a black box is'to control
the radiation environment so that emittance calculations will be sim-
plified. The spectrometer detector produces a signal proportional to
the difference in spectral radiance between the sample and detector.

Therefore, the zero line on the spectral chart represents not zero

radiance but the radiance of the detector.



To obtain emittance values as a simple ratio of the sample signal to
a blackbody signal, it is necessary to balance the detector radianée
with the black box enclosure radiance. This is done by keeping them
at the same temperature (30-31°C). The spectral emittance equation
is developed in the appendix.

The basic instrument used is the Model I-4T Interferometer
Spectrometer made by Block Engineering Inc. of Cambridge, Mass. The
general characteristics have been described elsewhere (1, 2). The
characteristics are: Detector-ambient temperature thermistor bolo-
meter; wavelength limits 2 to 16 microns; field of view 15°; reso-
lution about 35 cm™t (0.3 micron at 10 microns) for 1/2 second, 500
micron mirror sweep.

The spectrometer output is processed by a General Radio recording
wave analyzer which performs the partial Fourier transform and plots the
spectrum on chart paper in the form of voltage versus frequency, repre-
senting spectral radiance versus wavenumber. These voltages are read
off as divisions on the chart paper at about 30 points across the 8 to
14 micron band. The values are tabulated and then divided by the equiva~
lent values for a blackbody at the same temperature. The wavelength cali-
bration is obtained from an absorption spectrum of polystyrene film. The
resulting emittance spectra are shown in figures 2-4.

Temperature Measurement

The accurate measurement of sample surface temperature was the chief
exéerimental difficulty. Small thermistor probes (3/16" diam., 1/16"
thick disks) were pressed against the rock surface with a springloaded

piston,



.

The thermal continuity was increased between probe and surface with
the use of silicone gzrease (transistor heat sink grease)‘ Under
best circumnstances (polished sarple of high thermal conductivity)
the thermistor probe will register the correct temperature as
Jjudged by its spectrum in comparison with the blackbody spectrum..
However, with the rough sarmples used in this work, the measgured
temperature using the surface thermistors had little meaning and
was therfore nol used. In praciice, lhe sauple Leuperasure was
increased stepuise until the sample radiance curve just fit under
the blackbody curve at 345°K. The thermistor probe then generally
indicated a temperature 7-15° too low. The result of this practice
is that one point (e,) on the resulting emittance curve will have

a value that approaches or equals 1. This is not an unreasonable

result. In the work of Coblentz (3) the reflectance of most

-silicates approaches zero at about 7.5 microns. In this work(e,)

is uswally .97-1.00 at 7.5-7.7 microns. However, if no point on the
emittance curve is actually nearly unity, then the absolute emittance

values will be in error.

Blackbody Reference
A blackened cone (L5°) set in one face of a shect copper cube
filled with water (Leslie Cube) was the blackbody standard used.
Two other standards were tried and rejected; 1) an aluminium block
I x 3 x l/2'inches with one face painted with 3M brand Velvet Coat-

ing (black enzmel 101-Cl0); this had a 9% emittance dip at 9 microns,



2) a block of injector type razor blades bolted together (Lyon, 1965, p. 721);
the emittance was found to extremely dependent on the angle of view.
Error

1) The largest potential error in the emittance data results from the
uncertainty of sample surface temperature. This uncertainty is present in
the absolute level of the emittance curve. The accuracy of relative values
between any two wavelengths should not be affected.

2) To estimate the amplitude precision of the spectrometer and data
processing system, six emission spectra of the blackbody were recorded, keeping
conditions constant. The range in values around the average value for each
spectral point from 7.41 to 14.86 microns was determined. The precision ranged
from + 1.4% to + 6.3% with an average value of + 2.5%. The percent error in
emittance values could be somewhat larger. Another measure of repeatibility
is shown in the comparison of spectra #86 and #89 which are repeats of sample
#369.

3) Drift in the temperature of the detector and optical components will
a) shift the wavelength calibration and, b) change the magnitude of the signal.
These errors were kept small by monitoring the instrument temperature. Data
were taken only when the temperature had stabilized.

4) The emittance equation given in the appendix requires the temperature
of the detector and the enclosure to be identical. It is estimated that they

differed less than 2°C.



CONCLUSION

The emittance spectra of weathered surfaces, while they may vary con-
siderably from sample to sample, in general are still recognizable as the
spectra of the underlying rock.

The specfra of the acidic igneous rocks from the Mono Craters area
are very similar and would be difficult to spectrometrically distinguish
one from the other even without the problem of weathering. It should be
possible however, to distinguish them from the basalts of the area.

There are no significant spectral differences between thé two textural

varieties of basalt, pahoehoe and aa, from the Pisgah Crater area.

FUTURE WORK

Future work will be concentrated on evaluating the limits of variation
of the spectra of weathered surfaces. New techniques will be tried to im-

prove accuracy and signal to noise ratio.
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APPENDIX
Spectral Emittance Equation
The output of the I-4T spectrometer is a voltage, which is a function

of the difference in radiance between rock surface and detector.

(1 Vye = RyANy = R,

st"NvD

Where
Ve is the spectral output voltage of the spectrometer for the sample
Rv is the spectral responsivity of the spectrometer
Nys is the spectral radiance of the sample
Nyp is the spectral radiance of the detector
Nys is, however, the sum of the radiation emitted and reflected from
the rock surface. In this work the sample is enclosed in a box which approximates
.a blackbody cavity at the temperature of the detector. The radiation reflected
from the sample is a function of the radiance of the enclosure and the reflectance
of the sample.
(2) Nys =€y Nogg+ (1-€9) Nyg
Ty
Where
€y is the spectral emittance of the rock surface
(1 - GV) is the spegtral reflectance of the rock surface
rqvgﬁ is the sﬁectral radiance of a blackbodly at Tl
FJvé is the spectral radiance of sample enclosure
combine (1) and (2)
3 Vg = Ry|egNogar (1-60) Ny = Nop

-——

LR



1f one assumes that the detector and enclosure have an emittance of 1’

and if their temperatures are equal at T2, then N\)E = N\)D = NVB.,?
2

Equation (3) will then reduce to:

(4) V\)s = R\)e\) N\)BB -N\)BB

T T

If the sample were replaced by a blackbody at T1l, €, would be unity, therefore

(5 Vyes =Ry

Nwaa *l“ves
T T2

The ration of equations (4):(5) gives

® Vs
Vyeg

The spectral emittance of a rock, therefore, is the ratio of voltages produced

- 6\)

by rock and blackbody respectively.

[
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Fig. 6 Geologic Map of the Pisgah Crater Area, California:

showing sampling locations.
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EXPIANATION FOR GEOLOGIC MAP OF THE PISGAH IAVAS,
SAN BERNARDINO COUNTY, CALIFORNIA
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Porphyritic olivine basalt of eruptive phase three
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Porphyritic olivine basalt of eruptive phase-two
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Microporphyritic olivine basalt of eruptive phase one
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lava vent, with flow directions of last flow on surface
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